Kinetic studies and active site-binding properties of glutathione S-transferase using spin-labeled glutathione, a product analogue.

نویسندگان

  • V L Schramm
  • R McCluskey
  • F A Emig
  • G Litwack
چکیده

Kinetic and binding studies with substrates, products, and a spin-labeled product analogue of glutathione (sl-glutathione) have been used to characterize the kinetic mechanism and properties of the catalytic site of the homodimer YaYa of glutathione S-transferase. Product inhibition studies and inhibition by sl-glutathione indicate the random addition of substrates. The kinetically determined dissociation constant for the product S-(2,4-dinitrophenyl)glutathione is approximately 7 microM. A newly described spin-labeled product analogue, S-[[(2,2,5,5,-tetramethyl-1-oxy-3-pyrrolidinyl)-carbamoyl]methyl] glutathione (sl-glutathione), acts as a competitive inhibitor with respect to both substrates (glutathione and 1-Cl-2,4-dinitrobenzene) with a kinetically determined dissociation constant of approximately 40 microM. Analysis of the glutathione S-transferase X sl-glutathione complex by EPR gives a rigid limit spectrum indicative of highly immobilized spin label. Kinetic and EPR results support the proposal that sl-glutathione binds as a bisubstrate or product analogue by occupying both the glutathione and hydrophobic substrate sites. Binding studies of sl-glutathione by EPR give a dissociation constant of 28 microM and a single binding site per homodimer. Displacement of sl-glutathione by substrates and product have been used to directly determine enzyme-ligand dissociation constants. Dissociation constants of 2.1 mM, 17 microM, and 25 microM were obtained for glutathione, 1-Cl-2,4-dinitrobenzene and S-(2,4-dinitrophenyl)glutathione when enzyme was added to a mixture of sl-glutathione and the competing ligand. The dissociation constants for glutathione and 1-Cl-2,4-dinitrobenzene but not for S-(2,4-dinitrophenyl) glutathione were dependent on the order of addition, consistent with the existence of several kinetically stable conformations for the enzyme. The sl-glutathione described here may provide a useful analogue for similar studies with other glutathione S-transferases or other enzymes which bind glutathione.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of a portion of the active site of two rat liver glutathione S-transferases using a photoaffinity label.

The glutathione S-transferases are a family of dimeric enzymes that catalyze the reaction between GSH and a variety of electrophiles. Two closely related isozymes, referred to as YaYa and YcYc, were purified from rat liver. A radiolabeled azido derivative of glutathione (S-(p-azidophenacyl)[3H]glutathione) was prepared and used to label covalently the active site of the above two glutathione S-...

متن کامل

A sensitive core region in the structure of glutathione S-transferases.

A variant form of an Anopheles dirus glutathione S-transferase (GST), designated AdGSTD4-4, possesses a single amino acid change of leucine to arginine (Leu-103-Arg). Although residue 103 is outside of the active site, it has major effects on enzymic properties. To investigate these structural effects, site-directed mutagenesis was used to generate mutants by changing the non-polar leucine to a...

متن کامل

Inhibition and recognition studies on the glutathione-binding site of equine liver glutathione S-transferase.

Equine liver glutathione S-transferase has been shown to consist of two identical subunits of apparent Mr 25,500 and a pl of 8.9. Kinetic data at pH 6.5 with 1-chloro-2,4-dinitrobenzene as a substrate suggests a random rapid-equilibrium mechanism, which is supported by inhibition studies using glutathione analogues. S-(p-Bromobenzyl)glutathione and the corresponding N alpha-, CGlu- and CGly-sub...

متن کامل

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

Crystal structures and kinetic studies of human Kappa class glutathione transferase provide insights into the catalytic mechanism.

GSTs (glutathione transferases) are a family of enzymes that primarily catalyse nucleophilic addition of the thiol of GSH (reduced glutathione) to a variety of hydrophobic electrophiles in the cellular detoxification of cytotoxic and genotoxic compounds. GSTks (Kappa class GSTs) are a distinct class because of their unique cellular localization, function and structure. In the present paper we r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 259 2  شماره 

صفحات  -

تاریخ انتشار 1984